Definitions mb event system 1 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
concatDef concat(ll) == reduce(l,l'l @ l';nil;ll)
Thm* T:Type, ll:(T List) List. concat(ll T List
isegDef l1  l2 == l:T List. l2 = (l1 @ l)
Thm* T:Type, l1,l2:T List. l1  l2  Prop
uptoDef upto(n) == if n=0 nil else upto(n-1) @ [(n-1)] fi  (recursive)
Thm* n:. upto(n n List
appendDef as @ bs == Case of as; nil  bs ; a.as'  [a / (as' @ bs)]  (recursive)
Thm* T:Type, as,bs:T List. (as @ bs T List
mapDef map(f;as) == Case of as; nil  nil ; a.as'  [(f(a)) / map(f;as')]
Def (recursive)
Thm* A,B:Type, f:(AB), l:A List. map(f;l B List
Thm* A,B:Type, f:(AB), l:A List. map(f;l B List
natDef  == {i:| 0i }
Thm*   Type

About:
listconsconsnillist_ind
ifthenelseintnatural_numbersubtractsetlambdaapplyfunction
recursive_def_noticeuniverseequalmemberpropallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 1 Sections EventSystems Doc