Definitions mb event system 2 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
event_systemDef ES
Def == E:Type
Def == EqDecider(E)(T:IdIdType
Def == EqDecider(E)(V:IdIdType
Def == EqDecider(E)(M:IdLnkIdType
Def == EqDecider(E)(Top(loc:EId
Def == EqDecider(E)(Top(kind:EKnd
Def == EqDecider(E)(Top(val:(e:Eeventtype(kind;loc;V;M;e))
Def == EqDecider(E)(Top(when:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(after:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(sends:(l:IdLnkE(Msg_sub(lM) List))
Def == EqDecider(E)(Top(sender:{e:Eisrcv(kind(e)) }E
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||sends
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||(lnk(kind(e))
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||,sender(e))||)
Def == EqDecider(E)(Top(first:E
Def == EqDecider(E)(Top(pred:{e':E(first(e')) }E
Def == EqDecider(E)(Top(causl:EEProp
Def == EqDecider(E)(Top(ESAxioms{i:l}
Def == EqDecider(E)(Top(ESAxioms(E;
Def == EqDecider(E)(Top(ESAxioms(T;
Def == EqDecider(E)(Top(ESAxioms(M;
Def == EqDecider(E)(Top(ESAxioms(loc;
Def == EqDecider(E)(Top(ESAxioms(kind;
Def == EqDecider(E)(Top(ESAxioms(val;
Def == EqDecider(E)(Top(ESAxioms(when;
Def == EqDecider(E)(Top(ESAxioms(after;
Def == EqDecider(E)(Top(ESAxioms(sends;
Def == EqDecider(E)(Top(ESAxioms(sender;
Def == EqDecider(E)(Top(ESAxioms(index;
Def == EqDecider(E)(Top(ESAxioms(first;
Def == EqDecider(E)(Top(ESAxioms(pred;
Def == EqDecider(E)(Top(ESAxioms(causl)
Def == EqDecider(E)(Top(Top))
Thm* ES  Type{i'}
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
Msg_subDef Msg_sub(lM) == {m:Msg(M)| haslink(lm) }
Thm* M:(IdLnkIdType), l:IdLnk. Msg_sub(lM Type
es-MsglDef (Msg on l) == {m:Msg| haslink(lm) }
es-MsgDef Msg == Msg(1of(2of(2of(2of(2of(es))))))
MsgDef Msg(M) == l:IdLnkt:IdM(l,t)
Thm* M:(IdLnkIdType). Msg(M Type
haslinkDef haslink(lm) == mlnk(m) = l
Thm* M:(IdLnkIdType), l:IdLnk, m:Msg(M). haslink(lm Prop
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
es-loclDef (e <loc e') == loc(e) = loc(e' Id & (e < e')
IdDef Id == Atom
Thm* Id  Type
deqDef EqDecider(T) == eq:TTx,y:Tx = y  (eq(x,y))
Thm* T:Type. EqDecider(T Type
assertDef b == if b True else False fi
Thm* b:b  Prop
es-EDef E == 1of(es)
es-afterDef (x after e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es)))))))))))(x,e)
es-causlDef (e < e')
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(
Def == 1of(es)))))))))))))))))
Def == (e
Def == ,e')
es-firstDef first(e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(
Def == 1of(es)))))))))))))))
Def == (e)
es-indexDef index(e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es))))))))))))))
Def == (e)
es-isrcvDef isrcv(e) == isrcv(kind(e))
es-lnkDef lnk(e) == lnk(kind(e))
es-locDef loc(e) == 1of(2of(2of(2of(2of(2of(2of(es)))))))(e)
es-predDef pred(e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(
Def == 1of(es))))))))))))))))
Def == (e)
es-senderDef sender(e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es)))))))))))))(e)
es-sendsDef sends(l;e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es))))))))))))(l,e)
es-tagDef tag(e) == tag(kind(e))
es-valDef val(e) == 1of(2of(2of(2of(2of(2of(2of(2of(2of(es)))))))))(e)
es-vartypeDef vartype(i;x) == 1of(2of(2of(es)))(i,x)
es-whenDef (x when e) == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es))))))))))(x,e)
eventtypeDef eventtype(k;loc;V;M;e) == kindcase(k(e);a.V(loc(e),a);l,t.M(l,t))
Thm* E:Type, V:(IdIdType), M:(IdLnkIdType), loc:(EId), k:(EKnd),
Thm* e:E. eventtype(k;loc;V;M;e Type
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
int_segDef {i..j} == {k:i  k < j }
Thm* m,n:. {m..n Type
isrcvDef isrcv(k) == isl(k)
Thm* k:Knd. isrcv(k 
ldstDef destination(l) == 1of(2of(l))
Thm* l:IdLnk. destination(l Id
lengthDef ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive)
Thm* A:Type, l:A List. ||l||  
Thm* ||nil||  
lnkDef lnk(k) == 1of(outl(k))
Thm* k:Knd. isrcv(k lnk(k IdLnk
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
strongwellfoundedDef SWellFounded(R(x;y)) == f:(T). x,y:TR(x;y f(x)<f(y)
Thm* T:Type, R:(TTType). SWellFounded(R(x,y))  Prop
notDef A == A  False
Thm* A:Prop. (A Prop
selectDef l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n  n<||l||  l[n A
tagofDef tag(k) == 2of(outl(k))
Thm* k:Knd. isrcv(k tag(k Id
topDef Top == Void given Void
Thm* Top  Type
transDef Trans x,y:TE(x;y) == a,b,c:TE(a;b E(b;c E(a;c)
Thm* T:Type, E:(TTProp). (Trans x,y:TE(x,y))  Prop

About:
productproductlistnillist_indbool
ifthenelseassertvoidintnatural_numberaddless_thanatomunionset
isectapplyfunctionrecursive_def_noticeuniverseequalmembertop
propimpliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 2 Sections EventSystems Doc