| Some definitions of interest. |
|
Knd | Def Knd == (IdLnk Id)+Id |
| | Thm* Knd Type |
|
Msg | Def Msg(M) == l:IdLnk t:Id M(l,t) |
| | Thm* M:(IdLnk Id Type). Msg(M) Type |
|
haslink | Def haslink(l; m) == mlnk(m) = l |
| | Thm* M:(IdLnk Id Type), l:IdLnk, m:Msg(M). haslink(l; m) Prop |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
deq | Def EqDecider(T) == eq:T T    x,y:T. x = y  (eq(x,y)) |
| | Thm* T:Type. EqDecider(T) Type |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
eventtype | Def eventtype(k;loc;V;M;e) == kindcase(k(e);a.V(loc(e),a);l,t.M(l,t)) |
| | Thm* E:Type, V:(Id Id Type), M:(IdLnk Id Type), loc:(E Id), k:(E Knd),
Thm* e:E. eventtype(k;loc;V;M;e) Type |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
isrcv | Def isrcv(k) == isl(k) |
| | Thm* k:Knd. isrcv(k)  |
|
ldst | Def destination(l) == 1of(2of(l)) |
| | Thm* l:IdLnk. destination(l) Id |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
lnk | Def lnk(k) == 1of(outl(k)) |
| | Thm* k:Knd. isrcv(k)  lnk(k) IdLnk |
|
lsrc | Def source(l) == 1of(l) |
| | Thm* l:IdLnk. source(l) Id |
|
strongwellfounded | Def SWellFounded(R(x;y)) == f:(T  ). x,y:T. R(x;y)  f(x)<f(y) |
| | Thm* T:Type, R:(T T Type). SWellFounded(R(x,y)) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
rev_implies | Def P  Q == Q  P |
| | Thm* A,B:Prop. (A  B) Prop |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n  n<||l||  l[n] A |
|
tagof | Def tag(k) == 2of(outl(k)) |
| | Thm* k:Knd. isrcv(k)  tag(k) Id |
|
top | Def Top == Void given Void |
| | Thm* Top Type |
|
trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b)  E(b;c)  E(a;c) |
| | Thm* T:Type, E:(T T Prop). (Trans x,y:T. E(x,y)) Prop |