Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
es-beforeDef before(e) == if first(e) nil else before(pred(e)) @ [pred(e)] fi
Def (recursive)
appendDef as @ bs == Case of as; nil  bs ; a.as'  [a / (as' @ bs)]  (recursive)
Thm* T:Type, as,bs:T List. (as @ bs T List
event_systemDef ES
Def == E:Type
Def == EqDecider(E)(T:IdIdType
Def == EqDecider(E)(V:IdIdType
Def == EqDecider(E)(M:IdLnkIdType
Def == EqDecider(E)(Top(loc:EId
Def == EqDecider(E)(Top(kind:EKnd
Def == EqDecider(E)(Top(val:(e:Eeventtype(kind;loc;V;M;e))
Def == EqDecider(E)(Top(when:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(after:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(sends:(l:IdLnkE(Msg_sub(lM) List))
Def == EqDecider(E)(Top(sender:{e:Eisrcv(kind(e)) }E
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||sends
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||(lnk(kind(e))
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||,sender(e))||)
Def == EqDecider(E)(Top(first:E
Def == EqDecider(E)(Top(pred:{e':E(first(e')) }E
Def == EqDecider(E)(Top(causl:EEProp
Def == EqDecider(E)(Top(ESAxioms{i:l}
Def == EqDecider(E)(Top(ESAxioms(E;
Def == EqDecider(E)(Top(ESAxioms(T;
Def == EqDecider(E)(Top(ESAxioms(M;
Def == EqDecider(E)(Top(ESAxioms(loc;
Def == EqDecider(E)(Top(ESAxioms(kind;
Def == EqDecider(E)(Top(ESAxioms(val;
Def == EqDecider(E)(Top(ESAxioms(when;
Def == EqDecider(E)(Top(ESAxioms(after;
Def == EqDecider(E)(Top(ESAxioms(sends;
Def == EqDecider(E)(Top(ESAxioms(sender;
Def == EqDecider(E)(Top(ESAxioms(index;
Def == EqDecider(E)(Top(ESAxioms(first;
Def == EqDecider(E)(Top(ESAxioms(pred;
Def == EqDecider(E)(Top(ESAxioms(causl)
Def == EqDecider(E)(Top(Top))
Thm* ES  Type{i'}
assertDef b == if b True else False fi
Thm* b:b  Prop
es-EDef E == 1of(es)
es-firstDef first(e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(
Def == 1of(es)))))))))))))))
Def == (e)
es-loclDef (e <loc e') == loc(e) = loc(e' Id & (e < e')
es-predDef pred(e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(
Def == 1of(es))))))))))))))))
Def == (e)
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop
notDef A == A  False
Thm* A:Prop. (A Prop
wellfoundedDef WellFnd{i}(A;x,y.R(x;y))
Def == P:(AProp). (j:A. (k:AR(k;j P(k))  P(j))  {n:AP(n)}
Thm* A:Type{i}, r:(AAProp{i}). WellFnd{i}(A;x,y.r(x,y))  Prop{i'}

About:
productproductlistconsconsnil
list_indboolifthenelseassert
natural_numberless_thansetapplyfunctionrecursive_def_notice
universeequalmembertoppropimpliesandfalsetrueall
exists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc