Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}
MsgDef Msg(M) == l:IdLnkt:IdM(l,t)
Thm* M:(IdLnkIdType). Msg(M Type
w-actionDef Action(i) == action(w-action-dec(w.TA;w.M;i))
actionDef action(dec) == Unit+(k:Knddec(k))
Thm* dec:(KndType). action(dec Type
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
IdDef Id == Atom
Thm* Id  Type
w-action-decDef w-action-dec(TA;M;i)(k)
Def == kindcase(k;a.TA(i,a);l,tg.if destination(l) = i M(l,tg) else Void fi)
w-isnullDef isnull(a) == isl(a)
islDef isl(x) == InjCase(xy. truez. false)
Thm* A,B:Type, x:A+B. isl(x 
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
mlnkDef mlnk(m) == 1of(m)
Thm* M:(IdLnkIdType), m:Msg(M). mlnk(m IdLnk
Thm* the_es:ES, m:Msg. mlnk(m IdLnk
natDef  == {i:| 0i }
Thm*   Type
topDef Top == Void given Void
Thm* Top  Type

About:
productproductlistboolbfalsebtrueifthenelseunitvoidint
natural_numberatomuniondecideset
isectapplyfunctionuniverseequalmembertopall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc