Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
actionDef action(dec) == Unit+(k:Knddec(k))
Thm* dec:(KndType). action(dec Type
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
MsgDef Msg(M) == l:IdLnkt:IdM(l,t)
Thm* M:(IdLnkIdType). Msg(M Type
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
IdDef Id == Atom
Thm* Id  Type
w-action-decDef w-action-dec(TA;M;i)(k)
Def == kindcase(k;a.TA(i,a);l,tg.if destination(l) = i M(l,tg) else Void fi)
assertDef b == if b True else False fi
Thm* b:b  Prop
islDef isl(x) == InjCase(xy. truez. false)
Thm* A,B:Type, x:A+B. isl(x 
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
mlnkDef mlnk(m) == 1of(m)
Thm* M:(IdLnkIdType), m:Msg(M). mlnk(m IdLnk
Thm* the_es:ES, m:Msg. mlnk(m IdLnk
natDef  == {i:| 0i }
Thm*   Type
notDef A == A  False
Thm* A:Prop. (A Prop
outrDef outr(x) == InjCase(xy. "???"; zz)
Thm* A,B:Type, x:A+Bisl(x outr(x B
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A
topDef Top == Void given Void
Thm* Top  Type

About:
spreadproductproductboolbfalsebtrueifthenelseassertunitvoidintnatural_number
atomtokenuniondecidesetisect
applyfunctionuniversemembertoppropimpliesfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc