| Some definitions of interest. |
|
w-Msg | Def Msg == Msg(w.M) |
|
world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | Thm* World Type{i'} |
|
Msg | Def Msg(M) == l:IdLnk t:Id M(l,t) |
| | Thm* M:(IdLnk Id Type). Msg(M) Type |
|
action | Def action(dec) == Unit+(k:Knd dec(k)) |
| | Thm* dec:(Knd Type). action(dec) Type |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
w-withlnk | Def withlnk(l;mss) == mapfilter( ms.2of(ms); ms.mlnk(ms) = l;mss) |
|
eq_lnk | Def a = b == eqof(IdLnkDeq)(a,b) |
| | Thm* a,b:IdLnk. a = b  |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
w-action-dec | Def w-action-dec(TA;M;i)(k)
Def == kindcase(k;a.TA(i,a);l,tg.if destination(l) = i M(l,tg) else Void fi) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
lsrc | Def source(l) == 1of(l) |
| | Thm* l:IdLnk. source(l) Id |
|
mlnk | Def mlnk(m) == 1of(m) |
| | Thm* M:(IdLnk Id Type), m:Msg(M). mlnk(m) IdLnk |
| | Thm* the_es:ES, m:Msg. mlnk(m) IdLnk |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
w-M | Def w.M == 1of(2of(2of(w))) |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
top | Def Top == Void given Void |
| | Thm* Top Type |