Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
w-MsgDef Msg == Msg(w.M)
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}
MsgDef Msg(M) == l:IdLnkt:IdM(l,t)
Thm* M:(IdLnkIdType). Msg(M Type
actionDef action(dec) == Unit+(k:Knddec(k))
Thm* dec:(KndType). action(dec Type
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
w-withlnkDef withlnk(l;mss) == mapfilter(ms.2of(ms);ms.mlnk(ms) = l;mss)
eq_lnkDef a = b == eqof(IdLnkDeq)(a,b)
Thm* a,b:IdLnk. a = b  
IdDef Id == Atom
Thm* Id  Type
w-action-decDef w-action-dec(TA;M;i)(k)
Def == kindcase(k;a.TA(i,a);l,tg.if destination(l) = i M(l,tg) else Void fi)
assertDef b == if b True else False fi
Thm* b:b  Prop
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
mlnkDef mlnk(m) == 1of(m)
Thm* M:(IdLnkIdType), m:Msg(M). mlnk(m IdLnk
Thm* the_es:ES, m:Msg. mlnk(m IdLnk
natDef  == {i:| 0i }
Thm*   Type
w-MDef w.M == 1of(2of(2of(w)))
pi2Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))
topDef Top == Void given Void
Thm* Top  Type

About:
spreadproductproductlistboolifthenelseassertunitvoidint
natural_numberatomunionsetisectlambdaapply
functionuniverseequalmembertoppropfalsetrueall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc