Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
fair-fifoDef FairFifo
Def == (i:Id, t:l:IdLnk. source(l) = i  onlnk(l;m(i;t)) = nil  Msg List)
Def == & (i:Id, t:.
Def == & (isnull(a(i;t))
Def == & (
Def == & ((x:Id. s(i;t+1).x = s(i;t).x  vartype(i;x))
Def == & (& m(i;t) = nil  Msg List)
Def == & (i:Id, t:l:IdLnk.
Def == & (isrcv(l;a(i;t))
Def == & (
Def == & (destination(l) = i
Def == & (& ||queue(l;t)||1 & hd(queue(l;t)) = msg(a(i;t))  Msg)
Def == & (l:IdLnk, t:.
Def == & (t':
Def == & (tt' & isrcv(l;a(destination(l);t'))  queue(l;t') = nil  Msg List)
w-MsgDef Msg == Msg(w.M)
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
w-queueDef queue(l;t) == nth_tl(||rcvs(l;t)||;snds(l;t))
w-isrcvlDef isrcv(l;a) == isnull(a)isrcv(kind(a))lnk(kind(a)) = l
IdDef Id == Atom
Thm* Id  Type
assertDef b == if b True else False fi
Thm* b:b  Prop
geDef ij == ji
Thm* i,j:. (ij Prop
lengthDef ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive)
Thm* A:Type, l:A List. ||l||  
Thm* ||nil||  
natDef  == {i:| 0i }
Thm*   Type
w-aDef a(i;t) == 1of(2of(2of(2of(2of(w)))))(i,t)
w-msgDef msg(a) == msg(lnk(kind(a));tag(kind(a));val(a))

About:
productproductlistnillist_ind
boolifthenelseassertintnatural_numberaddatomsetapply
functionrecursive_def_noticeuniverseequalmembertopprop
impliesandorfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc