| | Some definitions of interest. |
|
| fair-fifo | Def FairFifo
Def == ( i:Id, t: , l:IdLnk. source(l) = i  onlnk(l;m(i;t)) = nil Msg List)
Def == & ( i:Id, t: .
Def == & ( isnull(a(i;t))
Def == & (
Def == & (( x:Id. s(i;t+1).x = s(i;t).x vartype(i;x))
Def == & (& m(i;t) = nil Msg List)
Def == & ( i:Id, t: , l:IdLnk.
Def == & ( isrcv(l;a(i;t))
Def == & (
Def == & (destination(l) = i
Def == & (& ||queue(l;t)|| 1 & hd(queue(l;t)) = msg(a(i;t)) Msg)
Def == & ( l:IdLnk, t: .
Def == & ( t': .
Def == & (t t' & isrcv(l;a(destination(l);t')) queue(l;t') = nil Msg List) |
|
| w-Msg | Def Msg == Msg(w.M) |
|
| world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | | Thm* World Type{i'} |
|
| IdLnk | Def IdLnk == Id Id  |
| | | Thm* IdLnk Type |
|
| w-queue | Def queue(l;t) == nth_tl(||rcvs(l;t)||;snds(l;t)) |
|
| w-isrcvl | Def isrcv(l;a) ==  isnull(a) isrcv(kind(a)) lnk(kind(a)) = l |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| ge | Def i j == j i |
| | | Thm* i,j: . (i j) Prop |
|
| length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | | Thm* A:Type, l:A List. ||l||  |
| | | Thm* ||nil||  |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
|
| w-a | Def a(i;t) == 1of(2of(2of(2of(2of(w)))))(i,t) |
|
| w-msg | Def msg(a) == msg(lnk(kind(a));tag(kind(a));val(a)) |