| Some definitions of interest. |
|
w-E | Def E == {p:(Id )|  isnull(a(1of(p);2of(p))) } |
|
world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | Thm* World Type{i'} |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
w-first | Def first(e)
Def == if time(e)= 0 true
Def == i; isnull(a(loc(e);time(e)-1)) first(<loc(e),time(e)-1>)
Def == else false fi
Def (recursive) |
|
w-pred | Def pred(e)
Def == if isnull(a(loc(e);time(e)-1)) pred(<loc(e),time(e)-1>)
Def == else <loc(e),time(e)-1> fi
Def (recursive) |
|
w-loc | Def loc(e) == 1of(e) |
|
w-time | Def time(e) == 2of(e) |