Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
w-matchDef match(l;t;t')
Def == (||snds(l;t)||||rcvs(l;t')||)
Def == (||rcvs(l;t')||<||snds(l;t)||+||onlnk(l;m(source(l);t))||)
w-sndsDef snds(l;t) == concat(map(t1.m(l;t1);upto(t)))
w-onlnkDef onlnk(l;mss) == filter(ms.mlnk(ms) = l;mss)
w-rcvsDef rcvs(l;t) == filter(a.isrcv(l;a);map(t1.a(destination(l);t1);upto(t)))
assertDef b == if b True else False fi
Thm* b:b  Prop
bandDef pq == if p q else false fi
Thm* p,q:. (pq 
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
natDef  == {i:| 0i }
Thm*   Type
leDef AB == B<A
Thm* i,j:. (ij Prop
le_intDef ij == j<i
Thm* i,j:. (ij 
lengthDef ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive)
Thm* A:Type, l:A List. ||l||  
Thm* ||nil||  
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
lt_intDef i<j == if i<j true ; false fi
Thm* i,j:. (i<j 
w-mDef m(i;t) == 1of(2of(2of(2of(2of(2of(w))))))(i,t)

About:
productproductlistnillist_indbool
bfalsebtrueifthenelseassertintnatural_numberaddless
less_thansetlambdaapplyfunctionrecursive_def_noticeuniverse
equalmembertoppropimpliesandfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc