| Some definitions of interest. |
|
world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | Thm* World Type{i'} |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
w-match | Def match(l;t;t')
Def == (||snds(l;t)|| ||rcvs(l;t')||)
Def == (||rcvs(l;t')||< ||snds(l;t)||+||onlnk(l;m(source(l);t))||) |
|
w-snds | Def snds(l;t) == concat(map( t1.m(l;t1);upto(t))) |
|
w-onlnk | Def onlnk(l;mss) == filter( ms.mlnk(ms) = l;mss) |
|
w-rcvs | Def rcvs(l;t) == filter( a.isrcv(l;a);map( t1.a(destination(l);t1);upto(t))) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
band | Def p q == if p q else false fi |
| | Thm* p,q: . (p q)  |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
le_int | Def i j ==  j< i |
| | Thm* i,j: . (i j)  |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
lsrc | Def source(l) == 1of(l) |
| | Thm* l:IdLnk. source(l) Id |
|
lt_int | Def i< j == if i<j true ; false fi |
| | Thm* i,j: . (i< j)  |
|
w-m | Def m(i;t) == 1of(2of(2of(2of(2of(2of(w))))))(i,t) |