Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
fair-fifoDef FairFifo
Def == (i:Id, t:l:IdLnk. source(l) = i  onlnk(l;m(i;t)) = nil  Msg List)
Def == & (i:Id, t:.
Def == & (isnull(a(i;t))
Def == & (
Def == & ((x:Id. s(i;t+1).x = s(i;t).x  vartype(i;x))
Def == & (& m(i;t) = nil  Msg List)
Def == & (i:Id, t:l:IdLnk.
Def == & (isrcv(l;a(i;t))
Def == & (
Def == & (destination(l) = i
Def == & (& ||queue(l;t)||1 & hd(queue(l;t)) = msg(a(i;t))  Msg)
Def == & (l:IdLnk, t:.
Def == & (t':
Def == & (tt' & isrcv(l;a(destination(l);t'))  queue(l;t') = nil  Msg List)
w-EDef E == {p:(Id)| isnull(a(1of(p);2of(p))) }
w-senderDef sender(e) == <source(lnk(kind(e))),mu(t.match(lnk(kind(e));t;time(e)))>
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}
assertDef b == if b True else False fi
Thm* b:b  Prop
isrcvDef isrcv(k) == isl(k)
Thm* k:Knd. isrcv(k 
nat_plusDef  == {i:| 0<i }
Thm*   Type
rel_expDef R^n == if n=0 x,yx = y  T else x,yz:T. (x R z) & (z R^n-1 y) fi
Def (recursive)
Thm* n:T:Type, R:(TTProp). R^n  TTProp
w-ekindDef kind(e) == kind(act(e))
w-loclDef e <loc e' == loc(e) = loc(e' Id & time(e)<time(e')
w-timeDef time(e) == 2of(e)

About:
pairproductproductlistnilboolifthenelseassertintnatural_numberaddsubtract
less_thansetlambdaapplyfunctionrecursive_def_noticeuniverseequal
membertoppropimpliesandorfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc