| | Some definitions of interest. |
|
| world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | | Thm* World Type{i'} |
|
| IdLnk | Def IdLnk == Id Id  |
| | | Thm* IdLnk Type |
|
| w-snds | Def snds(l;t) == concat(map( t1.m(l;t1);upto(t))) |
|
| concat | Def concat(ll) == reduce( l,l'. l @ l';nil;ll) |
| | | Thm* T:Type, ll:(T List) List. concat(ll) T List |
|
| int_seg | Def {i..j } == {k: | i k < j } |
| | | Thm* m,n: . {m..n } Type |
|
| iseg | Def l1 l2 == l:T List. l2 = (l1 @ l) |
| | | Thm* T:Type, l1,l2:T List. l1 l2 Prop |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
|
| le | Def A B == B<A |
| | | Thm* i,j: . (i j) Prop |
|
| length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | | Thm* A:Type, l:A List. ||l||  |
| | | Thm* ||nil||  |
|
| map | Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')]
Def (recursive) |
| | | Thm* A,B:Type, f:(A B), l:A List. map(f;l) B List |
| | | Thm* A,B:Type, f:(A B), l:A List . map(f;l) B List |
|
| upto | Def upto(n) == if n= 0 nil else upto(n-1) @ [(n-1)] fi (recursive) |
| | | Thm* n: . upto(n) n List |