Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
w-sndsDef snds(l;t) == concat(map(t1.m(l;t1);upto(t)))
concatDef concat(ll) == reduce(l,l'l @ l';nil;ll)
Thm* T:Type, ll:(T List) List. concat(ll T List
int_segDef {i..j} == {k:i  k < j }
Thm* m,n:. {m..n Type
isegDef l1  l2 == l:T List. l2 = (l1 @ l)
Thm* T:Type, l1,l2:T List. l1  l2  Prop
natDef  == {i:| 0i }
Thm*   Type
leDef AB == B<A
Thm* i,j:. (ij Prop
lengthDef ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive)
Thm* A:Type, l:A List. ||l||  
Thm* ||nil||  
mapDef map(f;as) == Case of as; nil  nil ; a.as'  [(f(a)) / map(f;as')]
Def (recursive)
Thm* A,B:Type, f:(AB), l:A List. map(f;l B List
Thm* A,B:Type, f:(AB), l:A List. map(f;l B List
uptoDef upto(n) == if n=0 nil else upto(n-1) @ [(n-1)] fi  (recursive)
Thm* n:. upto(n n List

About:
productproductlistconsconsnil
list_indifthenelseint
natural_numberaddsubtractless_thansetlambdaapplyfunction
recursive_def_noticeuniverseequalmembertoppropall
exists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc