| | Some definitions of interest. |
|
| deq | Def EqDecider(T) == eq:T T    x,y:T. x = y  (eq(x,y)) |
| | | Thm* T:Type. EqDecider(T) Type |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
| fpf-dom | Def x dom(f) == deq-member(eq;x;1of(f)) |
|
| so_lambda1 | Def ( 1. b(1))(1) == b(1) |
|
| top | Def Top == Void given Void |
| | | Thm* Top Type |