Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef b == if b True else False fi
Thm* b:b  Prop
fpf-is-emptyDef fpf-is-empty(f) == ||1of(f)||=0
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
fpfDef a:A fp-> B(a) == d:A Lista:{a:A| (a  d) }B(a)
Thm* A:Type, B:(AType). a:A fp-> B(a Type
fpf-emptyDef  == <nil,x.>
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop
lengthDef ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive)
Thm* A:Type, l:A List. ||l||  
Thm* ||nil||  

About:
pairproductlistnillist_indbool
bfalsebtrueifthenelseassertitintnatural_numberaddint_eq
less_thansetlambdafunctionrecursive_def_noticeuniverseequal
memberpropimpliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc