| | Some definitions of interest. |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| fpf-is-empty | Def fpf-is-empty(f) == ||1of(f)||= 0 |
|
| eq_int | Def i= j == if i=j true ; false fi |
| | | Thm* i,j: . (i= j)  |
|
| fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
| fpf-empty | Def == <nil, x. > |
|
| iff | Def P  Q == (P  Q) & (P  Q) |
| | | Thm* A,B:Prop. (A  B) Prop |
|
| l_member | Def (x l) == i: . i<||l|| & x = l[i] T |
| | | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
| length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | | Thm* A:Type, l:A List. ||l||  |
| | | Thm* ||nil||  |