| Who Cites rel plus? |
|
rel_plus | Def R^+(x,y) == n: . x R^n y |
| | Thm* T:Type, R:(T T Type). R^+ T T Type |
|
rel_exp | Def R^n == if n= 0 x,y. x = y T else x,y. z:T. (x R z) & (z R^n-1 y) fi
Def (recursive) |
| | Thm* n: , T:Type, R:(T T Prop). R^n T T Prop |
|
nat_plus | Def  == {i: | 0<i } |
| | Thm*  Type |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |