Definitions mb event system 4 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
fpf-joinDef f  g == <1of(f) @ filter(a.a  dom(f);1of(g)),a.f(a)?g(a)>
appendDef as @ bs == Case of as; nil  bs ; a.as'  [a / (as' @ bs)]  (recursive)
Thm* T:Type, as,bs:T List. (as @ bs T List
deqDef EqDecider(T) == eq:TTx,y:Tx = y  (eq(x,y))
Thm* T:Type. EqDecider(T Type
assertDef b == if b True else False fi
Thm* b:b  Prop
fpf-domDef x  dom(f) == deq-member(eq;x;1of(f))
deq-memberDef deq-member(eq;x;L) == reduce(a,b. eqof(eq)(a,x b;false;L)
filterDef filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l)
Thm* T:Type, P:(T), l:T List. filter(P;l T List
fpfDef a:A fp-> B(a) == d:A Lista:{a:A| (a  d) }B(a)
Thm* A:Type, B:(AType). a:A fp-> B(a Type
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop
notDef A == A  False
Thm* A:Prop. (A Prop
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A

About:
pairspreadproductlistconsnil
list_indboolbfalseifthenelse
assertless_thansetlambdaapplyfunctionrecursive_def_notice
universeequalmemberpropimpliesandfalsetrueall
exists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 4 Sections EventSystems Doc