| Some definitions of interest. |
|
deq | Def EqDecider(T) == eq:T T    x,y:T. x = y  (eq(x,y)) |
| | Thm* T:Type. EqDecider(T) Type |
|
fpf-val | Def z != f(x) ==> P(a;z) == x dom(f)  P(x;f(x)) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
bor | Def p  q == if p true else q fi |
| | Thm* p,q: . (p  q)  |
|
eqof | Def eqof(d) == 1of(d) |
| | Thm* T:Type, d:EqDecider(T). eqof(d) T T   |
|
fpf-ap | Def f(x) == 2of(f)(x) |
|
fpf-single | Def x : v == <[x], x.v> |
|
top | Def Top == Void given Void |
| | Thm* Top Type |