By: |
THEN AssertBY (A ![]() THEN AssertBY (eq' ![]() (DoSubsume (THEN (BackThru Thm* strong-subtype(A;B) ![]() ![]() ![]() THEN Analyze 0 THENA (Auto THEN TrySubsume) THEN ParallelOp -1 THEN Analyze 0 THEN Analyze 0 |
1 |
2. A' : Type 3. strong-subtype(A;A') 4. B : A ![]() ![]() 5. C : A' ![]() ![]() 6. eq : EqDecider(A) 7. eq' : EqDecider(A') 8. f : a:A fp-> B(a) 9. g : a:A fp-> B(a) 10. A ![]() 11. eq' ![]() 12. ![]() ![]() 13. ![]() ![]() ![]() ![]() ![]() ![]() 14. x : A 15. x ![]() ![]() ![]() ![]() ![]() | 20 steps |
2 |
2. A' : Type{i} 3. strong-subtype(A;A') 4. B : A ![]() ![]() 5. C : A' ![]() ![]() 6. eq : EqDecider(A) 7. eq' : EqDecider(A') 8. f : a:A fp-> B(a) 9. g : a:A fp-> B(a) 10. A ![]() 11. eq' ![]() 12. ![]() ![]() 13. ![]() ![]() ![]() ![]() ![]() ![]() 14. x : A ![]() ![]() ![]() ![]() | 1 step |
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |