| Some definitions of interest. |
|
Kind-deq | Def KindDeq == union-deq(IdLnk Id;Id;product-deq(IdLnk;Id;IdLnkDeq;IdDeq);IdDeq) |
|
Knd | Def Knd == (IdLnk Id)+Id |
| | Thm* Knd Type |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
ma-state | Def State(ds) == x:Id ds(x)?Top |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
deq | Def EqDecider(T) == eq:T T    x,y:T. x = y  (eq(x,y)) |
| | Thm* T:Type. EqDecider(T) Type |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
fpf-cap | Def f(x)?z == if x dom(f) f(x) else z fi |
|
fpf-dom | Def x dom(f) == deq-member(eq;x;1of(f)) |
|
eqof | Def eqof(d) == 1of(d) |
| | Thm* T:Type, d:EqDecider(T). eqof(d) T T   |
|
fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
fpf-single | Def x : v == <[x], x.v> |
|
rcv | Def rcv(l; tg) == inl(<l,tg>) |
| | Thm* l:IdLnk, tg:Id. rcv(l; tg) Knd |
|
top | Def Top == Void given Void |
| | Thm* Top Type |