Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
dsysDef Dsys == IdMsgA
Thm* Dsys  Type{i'}
interface-checkDef interface-check(D;l;tg;T) == T r M(destination(l)).din(l,tg)
ma-feasibleDef Feasible(M)
Def == xdom(1of(M)). T=1of(M)(x  T
Def == kdom(1of(2of(M))). T=1of(2of(M))(k  Dec(T)
Def == adom(1of(2of(2of(2of(M))))). p=1of(2of(2of(2of(M))))(a 
Def == &s:State(1of(M)). Dec(v:1of(2of(M))(locl(a))?Top. p(s,v))
Def == kxdom(1of(2of(2of(2of(2of(M)))))). 
Def == ef=1of(2of(2of(2of(2of(M)))))(kx  M.frame(1of(kx) affects 2of(kx))
Def == kldom(1of(2of(2of(2of(2of(2of(M))))))). 
Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl  tg:Id. 
Def == & (tg  map(p.1of(p);snd))  M.sframe(1of(kl) sends <2of(kl),tg>)
ma-outlinksDef ma-outlinks(M;i) == da-outlinks(1of(2of(M));i)
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
ma-sends-onDef M sends on link l
Def == deq-member(IdLnkDeq;l;map(p.
Def == 2of(p);1of(1of(2of(2of(2of(2of(2of(M)))))))))
IdDef Id == Atom
Thm* Id  Type
assertDef b == if b True else False fi
Thm* b:b  Prop
d-mDef M(i) == D(i)
l_allDef (xL.P(x)) == x:T. (x  L P(x)
Thm* T:Type, L:T List, P:(TProp). (xL.P(x))  Prop
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop
ldstDef destination(l) == 1of(2of(l))
Thm* l:IdLnk. destination(l Id
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
ma-is-emptyDef ma-is-empty(M)
Def == fpf-is-empty(1of(M))fpf-is-empty(1of(2of(M)))
Def == fpf-is-empty(1of(2of(2of(M))))fpf-is-empty(1of(2of(2of(2of(M)))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(M))))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(M)))))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(2of(M))))))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(2of(2of(M)))))))))
mapDef map(f;as) == Case of as; nil  nil ; a.as'  [(f(a)) / map(f;as')]
Def (recursive)
Thm* A,B:Type, f:(AB), l:A List. map(f;l B List
Thm* A,B:Type, f:(AB), l:A List. map(f;l B List
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A
pi2Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))

About:
spreadspreadproductproductlistconsnil
list_indboolifthenelseassert
decidableless_thanatomlambdaapplyfunctionrecursive_def_noticeuniverse
equalmembertopsubtype_relpropimpliesandfalsetrueall
exists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 6 Sections EventSystems Doc