| | Some definitions of interest. |
|
| d-sub | Def D1 D2 == i:Id. M(i) M(i) |
|
| dsys | Def Dsys == Id MsgA |
| | | Thm* Dsys Type{i'} |
|
| ma-sub | Def M1 M2
Def == 1of(M1) 1of(M2) & 1of(2of(M1)) 1of(2of(M2))
Def == & 1of(2of(2of(M1))) 1of(2of(2of(M2)))
Def == & & 1of(2of(2of(2of(M1)))) 1of(2of(2of(2of(M2))))
Def == & & 1of(2of(2of(2of(2of(M1))))) 1of(2of(2of(2of(2of(M2)))))
Def == & & 1of(2of(2of(2of(2of(2of(M1)))))) 1of(2of(2of(2of(2of(2of(M2))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) 1of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) 1of(M2)))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(M1)))))))) 1of(2of(2of(2of(2of(2of(2of(2of(M2)))))))) |
|
| msga | Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Void a:Id fp-> State(ds) ma-valtype(da; locl(a)) Prop
Def == kx:Knd Id fp-> State(ds) ma-valtype(da; 1of(kx)) ds(2of(kx))?Void
Def == kl:Knd IdLnk fp-> (tg:Id
Def == kl:Knd IdLnk fp-> ( State(ds) ma-valtype(da; 1of(kl))
Def == kl:Knd IdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd List ltg:IdLnk Id fp-> Knd List Top |
| | | Thm* MsgA Type{i'} |
|
| w-action | Def Action(i) == action(w-action-dec(w.TA;w.M;i)) |
|
| world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | | Thm* World Type{i'} |
|
| Knd | Def Knd == (IdLnk Id)+Id |
| | | Thm* Knd Type |
|
| ma-da | Def M.da(a) == 1of(2of(M))(a)?Top |
|
| IdLnk | Def IdLnk == Id Id  |
| | | Thm* IdLnk Type |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| ma-ds | Def M.ds(x) == 1of(M)(x)?Top |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| d-m | Def M(i) == D(i) |
|
| lsrc | Def source(l) == 1of(l) |
| | | Thm* l:IdLnk. source(l) Id |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |
|
| rcv | Def rcv(l; tg) == inl(<l,tg>) |
| | | Thm* l:IdLnk, tg:Id. rcv(l; tg) Knd |
|
| w-valtype | Def valtype(i;a) == kindcase(kind(a);a.w.TA(i,a);l,tg.w.M(l,tg)) |
|
| w-M | Def w.M == 1of(2of(2of(w))) |
|
| w-isnull | Def isnull(a) == isl(a) |
|
| w-kind | Def kind(a) == 1of(outr(a)) |
|
| w-vartype | Def vartype(i;x) == w.T(i,x) |