WhoCites Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Who Cites world?
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}
topDef Top == Void given Void
Thm* Top  Type
mlnkDef mlnk(m) == 1of(m)
Thm* M:(IdLnkIdType), m:Msg(M). mlnk(m IdLnk
Thm* the_es:ES, m:Msg. mlnk(m IdLnk
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
MsgDef Msg(M) == l:IdLnkt:IdM(l,t)
Thm* M:(IdLnkIdType). Msg(M Type
actionDef action(dec) == Unit+(k:Knddec(k))
Thm* dec:(KndType). action(dec Type
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
IdDef Id == Atom
Thm* Id  Type
w-action-decDef w-action-dec(TA;M;i)(k)
Def == kindcase(k;a.TA(i,a);l,tg.if destination(l) = i M(l,tg) else Void fi)
eq_idDef a = b == eqof(IdDeq)(a,b)
Thm* a,b:Id. a = b  
id-deqDef IdDeq == product-deq(Atom;;AtomDeq;NatDeq)
natDef  == {i:| 0i }
Thm*   Type
ldstDef destination(l) == 1of(2of(l))
Thm* l:IdLnk. destination(l Id
kindcaseDef kindcase(k;a.f(a);l,t.g(l;t))
Def == if islocal(k) f(act(k)) else g(lnk(k);tag(k)) fi
Thm* B:Type, k:Knd, f:(IdB), g:(IdLnkIdB).
Thm* kindcase(k;a.f(a);l,t.g(l,t))  B
eqofDef eqof(d) == 1of(d)
Thm* T:Type, d:EqDecider(T). eqof(d TT
lnkDef lnk(k) == 1of(outl(k))
Thm* k:Knd. isrcv(k lnk(k IdLnk
product-deqDef product-deq(A;B;a;b) == <proddeq(a;b),prod-deq(A;B;a;b)>
proddeqDef proddeq(a;b)(p,q) == (1of(a)(1of(p),1of(q)))(1of(b)(2of(p),2of(q)))
Thm* A,B:Type, a:EqDecider(A), b:EqDecider(B). proddeq(a;b ABAB
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A
leDef AB == B<A
Thm* i,j:. (ij Prop
notDef A == A  False
Thm* A:Prop. (A Prop
tagofDef tag(k) == 2of(outl(k))
Thm* k:Knd. isrcv(k tag(k Id
pi2Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))
actofDef act(k) == outr(k)
Thm* k:Knd. islocal(k act(k Id
islocalDef islocal(k) == isl(k)
Thm* k:Knd. islocal(k 
nat-deqDef NatDeq == <a,ba=b,nat_DASH_deq_DASH_aux{1:l}>
atom-deqDef AtomDeq == <a,ba=bAtom,atom_DASH_deq_DASH_aux{1:l}>
outlDef outl(x) == InjCase(xyyz. "???")
Thm* A,B:Type, x:A+B. isl(x outl(x A
outrDef outr(x) == InjCase(xy. "???"; zz)
Thm* A,B:Type, x:A+Bisl(x outr(x B
islDef isl(x) == InjCase(xy. truez. false)
Thm* A,B:Type, x:A+B. isl(x 
bnotDef b == if b false else true fi
Thm* b:b  
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
eq_atomDef x=yAtom == if x=yAtomtrue; false fi
Thm* x,y:Atom. x=yAtom  
prod-deqDef prod-deq(A;B;a;b)
Def == (A,B,a,b,p,qq/q1,q2.
Def == (p/p1,p2.
Def == (b/eq,b1.
Def == (a/e1,a1.
Def == ((%1.%1
Def == ((%1.(<%.<(%1.%1(p1,q1)/%4,%5%4((%1.%1)((%1.*)(*))))(a1)
Def == ((%1.(<%.,(%1.%1(p2,q2)/%4,%5%4((%1.%1)((%1.*)(*))))(b1)>
Def == ((%1.(,%.%/%1,%2*>))
Def == (((%1.%1.2)
Def == ((((%1.%1
Def == ((((%1.(<p1,p2> = <q1,q2 AB
Def == ((((%1.,<p1,p2> = <q1,q2 AB
Def == ((((%1.,((e1(p1,q1))(eq(p2,q2)))
Def == ((((%1.,(e1(p1,q1)) & (eq(p2,q2))
Def == ((((%1.,(%1.%1)((%1.<%2.%2,%2.%2>)(*))
Def == ((((%1.,(%1.%1)
Def == ((((%1.,((%1.%1(e1(p1,q1),eq(p2,q2)))
Def == ((((%1.,((p,q. InjCase(qx. InjCase(p
Def == ((((%1.,((p,q. InjCase(qx. InjCasex. <%.<*,*>,%.*>
Def == ((((%1.,((p,q. InjCase(qx. InjCasey. <%.<any(%),*>
Def == ((((%1.,((p,q. InjCase(qx. InjCase; y,%.%/%1,%2. any(%1)>)
Def == ((((%1.,((p,qy.
Def == ((((%1.,((p,qInjCase(p
Def == ((((%1.,((p,q. InjCasex. <%.<*,any(%)>,%.%/%1,%2. any(%2)>
Def == ((((%1.,((p,q. InjCasey. <%.<any(%),any(%)>
Def == ((((%1.,((p,q. InjCase; y,%.%/%1,%2. any(%2)>))))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(%5
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.((((%5
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.((((((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(((((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(((((((%6((%4.%4)((%4.%4)(%3))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(((((((%))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.((((%2))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(%1)
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(%5
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.((((%6
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.((((((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(((((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(((((((%6((%4.%4)((%4.%4)(%3))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(((((((%1))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.((((%2))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(%)>
Def == ((((P1,P2,Q1,Q2,%,%1,%2.<%3.(%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.(%6
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.(((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.((((%5
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.((((((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.(((((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.(((((((%5((%4.%4)((%4.%4)(%3))))
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.(((((((%))))
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.((((%2))))
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.(%1)
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(%6
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.((((%6
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.((((((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(((((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(((((((%5((%4.%4)((%4.%4)(%3))))
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(((((((%1))))
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.((((%2))))
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(%)>>))))
Def == (A
Def == ,B
Def == ,a
Def == ,b)
assertDef b == if b True else False fi
Thm* b:b  Prop
bandDef pq == if p q else false fi
Thm* p,q:. (pq 

Syntax:World has structure: world{i:l}

About:
pairspreadspreadspreadproductproductlistboolbfalsebtrue
ifthenelseassertunitvoidintnatural_numberint_eqless_than
atomtokenatom_equniondecide
setisectlambdaapplyfunctionuniverseequalaxiom
membertoppropimpliesandfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

WhoCites Definitions mb event system 6 Sections EventSystems Doc