Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
d-esDef es is an event system of D
Def == w:World, p:FairFifo. PossibleWorld(D;w) & es = ES(w ES
d-realizesDef D 
Def realizes es.P(es)
Def == D':Dsys. 
Def == D  D'  (w:World, p:FairFifo. PossibleWorld(D';w P(ES(w)))
d-realizes2Def D realizes2 es.P(es) == w:World, p:FairFifo. PossibleWorld(D;w P(ES(w))
dsysDef Dsys == IdMsgA
Thm* Dsys  Type{i'}
event_systemDef ES
Def == E:Type
Def == EqDecider(E)(T:IdIdType
Def == EqDecider(E)(V:IdIdType
Def == EqDecider(E)(M:IdLnkIdType
Def == EqDecider(E)(Top(loc:EId
Def == EqDecider(E)(Top(kind:EKnd
Def == EqDecider(E)(Top(val:(e:Eeventtype(kind;loc;V;M;e))
Def == EqDecider(E)(Top(when:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(after:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(sends:(l:IdLnkE(Msg_sub(lM) List))
Def == EqDecider(E)(Top(sender:{e:Eisrcv(kind(e)) }E
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||sends
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||(lnk(kind(e))
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||,sender(e))||)
Def == EqDecider(E)(Top(first:E
Def == EqDecider(E)(Top(pred:{e':E(first(e')) }E
Def == EqDecider(E)(Top(causl:EEProp
Def == EqDecider(E)(Top(ESAxioms{i:l}
Def == EqDecider(E)(Top(ESAxioms(E;
Def == EqDecider(E)(Top(ESAxioms(T;
Def == EqDecider(E)(Top(ESAxioms(M;
Def == EqDecider(E)(Top(ESAxioms(loc;
Def == EqDecider(E)(Top(ESAxioms(kind;
Def == EqDecider(E)(Top(ESAxioms(val;
Def == EqDecider(E)(Top(ESAxioms(when;
Def == EqDecider(E)(Top(ESAxioms(after;
Def == EqDecider(E)(Top(ESAxioms(sends;
Def == EqDecider(E)(Top(ESAxioms(sender;
Def == EqDecider(E)(Top(ESAxioms(index;
Def == EqDecider(E)(Top(ESAxioms(first;
Def == EqDecider(E)(Top(ESAxioms(pred;
Def == EqDecider(E)(Top(ESAxioms(causl)
Def == EqDecider(E)(Top(Top))
Thm* ES  Type{i'}
IdDef Id == Atom
Thm* Id  Type
d-single-initDef @ix:T initially x = v(j)
Def == if eqof(IdDeq)(j,i) x : T initially x = v else  fi
assertDef b == if b True else False fi
Thm* b:b  Prop
es-EDef E == 1of(es)
es-firstDef first(e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(
Def == 1of(es)))))))))))))))
Def == (e)
es-locDef loc(e) == 1of(2of(2of(2of(2of(2of(2of(es)))))))(e)
es-vartypeDef vartype(i;x) == 1of(2of(2of(es)))(i,x)
es-whenDef (x when e) == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es))))))))))(x,e)

About:
productproductlistboolifthenelseassertnatural_numberatom
setapplyfunctionuniverseequalmembertopprop
impliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 6 Sections EventSystems Doc