| | Some definitions of interest. |
|
| d-realizes | Def D
Def realizes es.P(es)
Def == D':Dsys.
Def == D D'  ( w:World, p:FairFifo. PossibleWorld(D';w)  P(ES(w))) |
|
| d-sub | Def D1 D2 == i:Id. M(i) M(i) |
|
| dsys | Def Dsys == Id MsgA |
| | | Thm* Dsys Type{i'} |
|
| Knd | Def Knd == (IdLnk Id)+Id |
| | | Thm* Knd Type |
|
| ma-state | Def State(ds) == x:Id ds(x)?Top |
|
| ma-valtype | Def ma-valtype(da; k) == da(k)?Top |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| d-single-effect | Def d-single-effect(i; ds; da; k; x; f)(j)
Def == if eqof(IdDeq)(j,i) ma-single-effect(ds; da; k; x; f) else fi |
|
| es-E | Def E == 1of(es) |
|
| es-after | Def (x after e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es)))))))))))(x,e) |
|
| es-valtype | Def valtype(e) == if isrcv(e) rcvtype(e) else acttype(e) fi |
|
| es-kind | Def kind(e) == 1of(2of(2of(2of(2of(2of(2of(2of(es))))))))(e) |
|
| es-loc | Def loc(e) == 1of(2of(2of(2of(2of(2of(2of(es)))))))(e) |
|
| es-val | Def val(e) == 1of(2of(2of(2of(2of(2of(2of(2of(2of(es)))))))))(e) |
|
| es-vartype | Def vartype(i;x) == 1of(2of(2of(es)))(i,x) |
|
| es-when | Def (x when e) == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es))))))))))(x,e) |
|
| fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
| fpf-cap | Def f(x)?z == if x dom(f) f(x) else z fi |
|
| m-sys-at | Def @i: A(j) == if j = i A else fi |
|
| id-deq | Def IdDeq == product-deq(Atom; ;AtomDeq;NatDeq) |
|
| ma-single-effect | Def ma-single-effect(ds; da; k; x; f) == mk-ma(ds; da; ; ; <k,x> : f; ; ; ) |
|
| top | Def Top == Void given Void |
| | | Thm* Top Type |