Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
ma-stateDef State(ds) == x:Idds(x)?Top
ma-valtypeDef ma-valtype(dak) == da(k)?Top
IdDef Id == Atom
Thm* Id  Type
deqDef EqDecider(T) == eq:TTx,y:Tx = y  (eq(x,y))
Thm* T:Type. EqDecider(T Type
id-deqDef IdDeq == product-deq(Atom;;AtomDeq;NatDeq)
assertDef b == if b True else False fi
Thm* b:b  Prop
fpfDef a:A fp-> B(a) == d:A Lista:{a:A| (a  d) }B(a)
Thm* A:Type, B:(AType). a:A fp-> B(a Type
fpf-joinDef f  g == <1of(f) @ filter(a.a  dom(f);1of(g)),a.f(a)?g(a)>
fpf-capDef f(x)?z == if x  dom(f) f(x) else z fi
fpf-domDef x  dom(f) == deq-member(eq;x;1of(f))
fpf-singleDef x : v == <[x],x.v>
notDef A == A  False
Thm* A:Prop. (A Prop
topDef Top == Void given Void
Thm* Top  Type

About:
pairproductproductlistconsnilboolifthenelseassert
voidatomunionsetisectlambdaapplyfunction
universeequalmembertoppropimpliesfalsetrueall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 6 Sections EventSystems Doc