WhoCites Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Who Cites fpf-compatible?
fpf-compatibleDef f || g == x:Ax  dom(f) & x  dom(g f(x) = g(x B(x)
fpf-apDef f(x) == 2of(f)(x)
fpf-domDef x  dom(f) == deq-member(eq;x;1of(f))
assertDef b == if b True else False fi
Thm* b:b  Prop
pi2Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))
deq-memberDef deq-member(eq;x;L) == reduce(a,b. eqof(eq)(a,x b;false;L)
eqofDef eqof(d) == 1of(d)
Thm* T:Type, d:EqDecider(T). eqof(d TT
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A
borDef p  q == if p true else q fi
Thm* p,q:. (p  q 
reduceDef reduce(f;k;as) == Case of as; nil  k ; a.as'  f(a,reduce(f;k;as'))
Def (recursive)
Thm* A,B:Type, f:(ABB), k:Bas:A List. reduce(f;k;as B

Syntax:f || g has structure: fpf-compatible(Aa.B(a); eqfg)

About:
spreadspreadproductlistlist_indboolbfalse
btrueifthenelseassertlambdaapplyfunctionrecursive_def_notice
universeequalmemberpropimpliesandfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

WhoCites Definitions mb event system 6 Sections EventSystems Doc