By: |
![]() THEN AssertBY (k : T ![]() THEN Unfold `ma-single-effect0` 0 THEN BackThru Thm* ![]() Thm* ![]() ![]() ![]() ![]() ![]() Thm* ![]() ![]() ![]() ![]() Thm* ![]() ![]() Thm* ![]() ![]() ![]() ![]() ![]() ![]() THEN Try (Complete Auto) |
1 |
2. k : Knd 3. A : Type 4. T : Type 5. f : A ![]() ![]() ![]() ![]() 6. A 7. T 8. x : A ![]() 9. k : T ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 3 steps |
2 |
2. k : Knd 3. A : Type 4. T : Type 5. A ![]() ![]() ![]() ![]() 6. A 7. T 8. x : A ![]() 9. k : T ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 1 step |
3 |
2. k : Knd 3. A : Type 4. T : Type 5. A ![]() ![]() ![]() ![]() 6. A 7. T 8. x : A ![]() 9. k : T ![]() ![]() ![]() ![]() ![]() ![]() ![]() | 1 step |
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |