WhoCites Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Who Cites ma-single-effect1?
ma-single-effect1Def ma-single-effect1(x;A;y;B;k;T;f)
Def == ma-single-effect(x : A  y : Bk : Tkx; (s,vf(s(x),s(y),v)))
ma-single-effectDef ma-single-effect(dsdakxf) == mk-ma(dsda; ; ; <k,x> : f; ; ; )
fpf-singleDef x : v == <[x],x.v>
id-deqDef IdDeq == product-deq(Atom;;AtomDeq;NatDeq)
fpf-joinDef f  g == <1of(f) @ filter(a.a  dom(f);1of(g)),a.f(a)?g(a)>
nat-deqDef NatDeq == <a,ba=b,nat_DASH_deq_DASH_aux{1:l}>
atom-deqDef AtomDeq == <a,ba=bAtom,atom_DASH_deq_DASH_aux{1:l}>
natDef  == {i:| 0i }
Thm*   Type
product-deqDef product-deq(A;B;a;b) == <proddeq(a;b),prod-deq(A;B;a;b)>
fpf-capDef f(x)?z == if x  dom(f) f(x) else z fi
fpf-apDef f(x) == 2of(f)(x)
fpf-domDef x  dom(f) == deq-member(eq;x;1of(f))
proddeqDef proddeq(a;b)(p,q) == (1of(a)(1of(p),1of(q)))(1of(b)(2of(p),2of(q)))
Thm* A,B:Type, a:EqDecider(A), b:EqDecider(B). proddeq(a;b ABAB
deq-memberDef deq-member(eq;x;L) == reduce(a,b. eqof(eq)(a,x b;false;L)
eqofDef eqof(d) == 1of(d)
Thm* T:Type, d:EqDecider(T). eqof(d TT
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A
bnotDef b == if b false else true fi
Thm* b:b  
filterDef filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l)
Thm* T:Type, P:(T), l:T List. filter(P;l T List
appendDef as @ bs == Case of as; nil  bs ; a.as'  [a / (as' @ bs)]  (recursive)
Thm* T:Type, as,bs:T List. (as @ bs T List
fpf-emptyDef  == <nil,x.>
mk-maDef mk-ma(dsdainitpreefsendframesframe)
Def == <ds,da,init,pre,ef,send,frame,sframe,>
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
eq_atomDef x=yAtom == if x=yAtomtrue; false fi
Thm* x,y:Atom. x=yAtom  
leDef AB == B<A
Thm* i,j:. (ij Prop
prod-deqDef prod-deq(A;B;a;b)
Def == (A,B,a,b,p,qq/q1,q2.
Def == (p/p1,p2.
Def == (b/eq,b1.
Def == (a/e1,a1.
Def == ((%1.%1
Def == ((%1.(<%.<(%1.%1(p1,q1)/%4,%5%4((%1.%1)((%1.*)(*))))(a1)
Def == ((%1.(<%.,(%1.%1(p2,q2)/%4,%5%4((%1.%1)((%1.*)(*))))(b1)>
Def == ((%1.(,%.%/%1,%2*>))
Def == (((%1.%1.2)
Def == ((((%1.%1
Def == ((((%1.(<p1,p2> = <q1,q2 AB
Def == ((((%1.,<p1,p2> = <q1,q2 AB
Def == ((((%1.,((e1(p1,q1))(eq(p2,q2)))
Def == ((((%1.,(e1(p1,q1)) & (eq(p2,q2))
Def == ((((%1.,(%1.%1)((%1.<%2.%2,%2.%2>)(*))
Def == ((((%1.,(%1.%1)
Def == ((((%1.,((%1.%1(e1(p1,q1),eq(p2,q2)))
Def == ((((%1.,((p,q. InjCase(qx. InjCase(p
Def == ((((%1.,((p,q. InjCase(qx. InjCasex. <%.<*,*>,%.*>
Def == ((((%1.,((p,q. InjCase(qx. InjCasey. <%.<any(%),*>
Def == ((((%1.,((p,q. InjCase(qx. InjCase; y,%.%/%1,%2. any(%1)>)
Def == ((((%1.,((p,qy.
Def == ((((%1.,((p,qInjCase(p
Def == ((((%1.,((p,q. InjCasex. <%.<*,any(%)>,%.%/%1,%2. any(%2)>
Def == ((((%1.,((p,q. InjCasey. <%.<any(%),any(%)>
Def == ((((%1.,((p,q. InjCase; y,%.%/%1,%2. any(%2)>))))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(%5
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.((((%5
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.((((((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(((((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(((((((%6((%4.%4)((%4.%4)(%3))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(((((((%))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.((((%2))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.<%3.(%1)
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(%5
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.((((%6
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.((((((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(((((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(((((((%6((%4.%4)((%4.%4)(%3))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(((((((%1))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.((((%2))))
Def == ((((P1,P2,Q1,Q2,%,%1. <%2.,%3.(%)>
Def == ((((P1,P2,Q1,Q2,%,%1,%2.<%3.(%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.(%6
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.(((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.((((%5
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.((((((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.(((((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.(((((((%5((%4.%4)((%4.%4)(%3))))
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.(((((((%))))
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.((((%2))))
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.<%3.(%1)
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(%6
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.((((%6
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.((((((%4.%4)
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(((((((%4.%4/%5,%6.
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(((((((%5((%4.%4)((%4.%4)(%3))))
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(((((((%1))))
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.((((%2))))
Def == ((((P1,P2,Q1,Q2,%,%1. ,%2.,%3.(%)>>))))
Def == (A
Def == ,B
Def == ,a
Def == ,b)
pi2Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))
reduceDef reduce(f;k;as) == Case of as; nil  k ; a.as'  f(a,reduce(f;k;as'))
Def (recursive)
Thm* A,B:Type, f:(ABB), k:Bas:A List. reduce(f;k;as B
notDef A == A  False
Thm* A:Prop. (A Prop
assertDef b == if b True else False fi
Thm* b:b  Prop
bandDef pq == if p q else false fi
Thm* p,q:. (pq 
borDef p  q == if p true else q fi
Thm* p,q:. (p  q 

Syntax:ma-single-effect1(x;A;y;B;k;T;f) has structure: ma-single-effect1(xAyBkTf)

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelse
assertitintnatural_numberint_eqless_thanatomatom_eq
decidesetlambdaapplyfunction
recursive_def_noticeuniverseequalaxiommemberpropimpliesandfalsetrue
all!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

WhoCites Definitions mb event system 6 Sections EventSystems Doc