mb event system 7 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def |R| == {i:Id| (R(i)) }

is mentioned by

Thm* T:(Id), to,from:(|T|(IdLnk List)), f:(Edge(T)).
Thm* bi-tree(T;to;from)
Thm* 
Thm* spanner(f;T;to;from)
Thm* 
Thm* (i,j:|T|.
Thm* (spanner-root(f;T;to;from;i spanner-root(f;T;to;from;j i = j)
[spanner-root-unique]
Thm* T:(Id), to,from:(|T|(IdLnk List)), f:(Edge(T)).
Thm* bi-tree(T;to;from)
Thm* 
Thm* spanner(f;T;to;from (i:|T|. spanner-root(f;T;to;from;i))
[spanner-root-exists]
Thm* T:(Id), to,from:(|T|(IdLnk List)), f:(Edge(T)).
Thm* bi-graph(T;to;from spanner(f;T;to;from Prop
[spanner_wf]
Thm* T:(Id), to,from:(|T|(IdLnk List)).
Thm* bi-tree(T;to;from (n:p:Edge(T) List. lpath(p ||p||n)
[bi-tree-diameter]
Thm* G:(Id), to,from:(|G|(IdLnk List)). bi-tree(G;to;from Prop[bi-tree_wf]
Thm* G:(Id), to,from:(|G|(IdLnk List)), e:Edge(G), i:|G|.
Thm* bi-graph(G;to;from ((inverse(e from(i))  destination(e) = i)
[edge-inv-from]
Thm* G:(Id), to,from:(|G|(IdLnk List)), e:Edge(G), i:|G|.
Thm* bi-graph(G;to;from ((inverse(e to(i))  source(e) = i)
[edge-inv-to]
Thm* G:(Id), to,from:(|G|(IdLnk List)), e:Edge(G), i:|G|.
Thm* bi-graph(G;to;from ((e  from(i))  source(e) = i)
[edge-from]
Thm* G:(Id), to,from:(|G|(IdLnk List)), e:Edge(G), i:|G|.
Thm* bi-graph(G;to;from ((e  to(i))  destination(e) = i)
[edge-to]
Thm* G:(Id), to,from:(|G|(IdLnk List)), l:Edge(G).
Thm* bi-graph(G;to;from inverse(l Edge(G)
[bi-graph-inv_wf]
Thm* G:(Id), to,from:(|G|(IdLnk List)), i:|G|.
Thm* bi-graph(G;to;from from(i Edge(G) List
[bi-graph-from_wf]
Thm* G:(Id), to,from:(|G|(IdLnk List)), i:|G|.
Thm* bi-graph(G;to;from to(i Edge(G) List
[bi-graph-to_wf]
Thm* T:(Id), to,from:(|T|(IdLnk List)), u:Edge(T).
Thm* bi-graph(T;to;from destination(u |T|
[dst-edge]
Thm* T:(Id), to,from:(|T|(IdLnk List)), u:Edge(T).
Thm* bi-graph(T;to;from source(u |T|
[src-edge]
Thm* G:(Id), to,from:(|G|(IdLnk List)), l:Edge(G).
Thm* bi-graph(G;to;from lnk-inv(l Edge(G)
[inv-is-edge]
Thm* G:(Id), to,from:(|G|(IdLnk List)). bi-graph(G;to;from Prop[bi-graph_wf]
Thm* R:(Id), uid:(|R|), out,in:(|R|IdLnk).
Thm* ring(R;in;out)
Thm* 
Thm* Inj(|R|; uid)
Thm* 
Thm* loc.(ring-leader1(loc;R;uid;out;in)) 
Thm* realizes es.ldr:|R|. 
Thm* realizes es.e@ldr.kind(e) = locl("leader")
Thm* realizes es.& (i:|R|. e@i.kind(e) = locl("leader")  i = ldr  |R|)
[ring-leader1__realizes]
Thm* R:(Id), uid:(|R|), out,in:(|R|IdLnk).
Thm* ring(R;in;out)
Thm* 
Thm* Inj(|R|; uid d-feasible(loc.(ring-leader1(loc;R;uid;out;in)))
[ring-leader1__feasible]
Thm* loc:Id, R:(Id), uid:(|R|), out,in:(|R|IdLnk).
Thm* ring(R;in;out)
Thm* 
Thm* Inj(|R|; uid ring-leader1(loc;R;uid;out;in MsgA List
[ring-leader1_wf]
Thm* loc:Id, R:(Id), uid:(|R|), out,in:(|R|IdLnk).
Thm* ring(R;in;out)
Thm* 
Thm* Inj(|R|; uid (A,Bring-leader1(loc;R;uid;out;in).A ||+ B)
[ring-leader1__compatible]
Thm* R:(Id), x,y:|R|. Dec(x = y)[decidable__rset_equal]
Thm* R:(Id). SQType(|R|)[rset_sq]
Thm* R:(Id), in,out:(|R|IdLnk).
Thm* ring(R;in;out (L:|R| List. 0<||L|| & (i:|R|. (i  L)))
[ring-list]
Thm* R:(Id), in,out:(|R|IdLnk), i,j:|R|.
Thm* ring(R;in;out i = p(j d(i;p(j)) = d(i;j)-1
[rdist-rprev]
Thm* R:(Id), in,out:(|R|IdLnk).
Thm* ring(R;in;out (i,j:|R|. n(i) = n(j i = j)
[rnext-one-one]
Thm* R:(Id), in,out:(|R|IdLnk), j:|R|. ring(R;in;out n(p(j)) = j[rnext-rprev]
Thm* R:(Id), in,out:(|R|IdLnk), i,j:|R|.
Thm* ring(R;in;out)
Thm* 
Thm* x.n(x)^d(i;j)(i) = j & (k:k<d(i;j x.n(x)^k(i) = j)
[rdist-property]
Thm* R:(Id), in,out:(|R|IdLnk), i,j:|R|. ring(R;in;out d(i;j [rdist_wf]
Thm* R:(Id), in,out:(|R|IdLnk), i:|R|. ring(R;in;out p(i |R|[rprev_wf]
Thm* R:(Id), in,out:(|R|IdLnk), i:|R|. ring(R;in;out n(i |R|[rnext_wf]
Thm* R:(Id), in,out:(|R|IdLnk). ring(R;in;out Prop[ring_wf]
Def spanner(f;T;to;from)
Def == (l:Edge(T). f(l) = f(inverse(l)))
Def == & (i:|T|, l1,l2:Edge(T).
Def == & ((l1  to(i))
Def == & (
Def == & ((l2  to(i))  l1 = l2  IdLnk  (f(l1))  (f(l2)))
[spanner]
Def bi-tree(T;to;from)
Def == bi-graph(T;to;from)
Def == & (i,j:|T|.
Def == & (p:Edge(T) List. 
Def == & (lconnects(p;i;j) & (q:Edge(T) List. lconnects(q;i;j q = p))
Def == & (L:|T| List. i:|T|. (i  L))
Def == & |T|
[bi-tree]
Def Edge(G) == {l:IdLnk| i:|G|. (l  from(i)) }[bi-graph-edge]
Def bi-graph(G;to;from)
Def == i:|G|. 
Def == (lto(i).destination(l) = i
Def == (G(source(l)))
Def == & (l  from(source(l)))
Def == & (lnk-inv(l from(i)))
Def == & (lfrom(i).source(l) = i
Def == & (G(destination(l)))
Def == & & (l  to(destination(l)))
Def == & & (lnk-inv(l to(i)))
[bi-graph]
Def ring(R;in;out)
Def == (i:|R|. 
Def == ((R(source(in(i)))) & (R(destination(out(i))))
Def == (& source(out(i)) = i
Def == (& & destination(in(i)) = i
Def == (& in(destination(out(i))) = out(i IdLnk
Def == (& out(source(in(i))) = in(i IdLnk)
Def == & (i,j:|R|. k:x.destination(out(x))^k(i) = j  Id)
Def == & |R|
[ring]

Try larger context: EventSystems IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

mb event system 7 Sections EventSystems Doc