Definitions mb event system 7 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
bi-treeDef bi-tree(T;to;from)
Def == bi-graph(T;to;from)
Def == & (i,j:|T|.
Def == & (p:Edge(T) List. 
Def == & (lconnects(p;i;j) & (q:Edge(T) List. lconnects(q;i;j q = p))
Def == & (L:|T| List. i:|T|. (i  L))
Def == & |T|
bi-graphDef bi-graph(G;to;from)
Def == i:|G|. 
Def == (lto(i).destination(l) = i
Def == (G(source(l)))
Def == & (l  from(source(l)))
Def == & (lnk-inv(l from(i)))
Def == & (lfrom(i).source(l) = i
Def == & (G(destination(l)))
Def == & & (l  to(destination(l)))
Def == & & (lnk-inv(l to(i)))
spannerDef spanner(f;T;to;from)
Def == (l:Edge(T). f(l) = f(inverse(l)))
Def == & (i:|T|, l1,l2:Edge(T).
Def == & ((l1  to(i))
Def == & (
Def == & ((l2  to(i))  l1 = l2  IdLnk  (f(l1))  (f(l2)))
Thm* T:(Id), to,from:(|T|(IdLnk List)), f:(Edge(T)).
Thm* bi-graph(T;to;from spanner(f;T;to;from Prop
spanner-rootDef spanner-root(f;T;to;from;i) == l:Edge(T). (l  to(i))  (f(l))
bi-graph-edgeDef Edge(G) == {l:IdLnk| i:|G|. (l  from(i)) }
lconnectsDef lconnects(p;i;j)
Def == lpath(p)
Def == & (||p|| = 0    i = j  Id)
Def == & (||p|| = 0    i = source(hd(p)) & j = destination(last(p)))
Thm* p:IdLnk List, i,j:Id. lconnects(p;i;j Prop
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
rsetDef |R| == {i:Id| (R(i)) }
Thm* R:(Id). |R Type
IdDef Id == Atom
Thm* Id  Type
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop

About:
productlistboolintnatural_numberless_thanatomsetapplyfunctionuniverse
equalmemberpropimpliesandorallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 7 Sections EventSystems Doc