| Some definitions of interest. |
|
bi-tree | Def bi-tree(T;to;from)
Def == bi-graph(T;to;from)
Def == & ( i,j:|T|.
Def == & ( p:Edge(T) List.
Def == & (lconnects(p;i;j) & ( q:Edge(T) List. lconnects(q;i;j)  q = p))
Def == & ( L:|T| List. i:|T|. (i L))
Def == & |T| |
|
bi-graph | Def bi-graph(G;to;from)
Def == i:|G|.
Def == ( l to(i).destination(l) = i
Def == & (G(source(l)))
Def == & (l from(source(l)))
Def == & (lnk-inv(l) from(i)))
Def == & ( l from(i).source(l) = i
Def == & & (G(destination(l)))
Def == & & (l to(destination(l)))
Def == & & (lnk-inv(l) to(i))) |
|
spanner | Def spanner(f;T;to;from)
Def == ( l:Edge(T). f(l) =  f(inverse(l)))
Def == & ( i:|T|, l1,l2:Edge(T).
Def == & ((l1 to(i))
Def == & (
Def == & ((l2 to(i))  l1 = l2 IdLnk  (f(l1)) (f(l2))) |
| | Thm* T:(Id  ), to,from:(|T| (IdLnk List)), f:(Edge(T)  ).
Thm* bi-graph(T;to;from)  spanner(f;T;to;from) Prop |
|
spanner-root | Def spanner-root(f;T;to;from;i) == l:Edge(T). (l to(i))  (f(l)) |
|
bi-graph-edge | Def Edge(G) == {l:IdLnk| i:|G|. (l from(i)) } |
|
lconnects | Def lconnects(p;i;j)
Def == lpath(p)
Def == & (||p|| = 0  i = j Id)
Def == & ( ||p|| = 0  i = source(hd(p)) & j = destination(last(p))) |
| | Thm* p:IdLnk List, i,j:Id. lconnects(p;i;j) Prop |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
rset | Def |R| == {i:Id| (R(i)) } |
| | Thm* R:(Id  ). |R| Type |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
l_member | Def (x l) == i: . i<||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |