| Some definitions of interest. |
|
band | Def p q == if p q else false fi |
|
| Thm* p,q: . (p q)  |
|
double_sum | Def sum(f(x;y) | x < n; y < m) == sum(sum(f(x;y) | y < m) | x < n) |
|
| Thm* n,m: , f:( n  m  ). sum(f(x,y) | x < n; y < m)  |
|
int_seg | Def {i..j } == {k: | i k < j } |
|
| Thm* m,n: . {m..n } Type |
|
nat | Def == {i: | 0 i } |
|
| Thm* Type |
|
le | Def A B == B<A |
|
| Thm* i,j: . (i j) Prop |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
|
| Thm* A:Type, l:A List. ||l||  |
|
| Thm* ||nil||  |
|
select | Def l[i] == hd(nth_tl(i;l)) |
|
| Thm* A:Type, l:A List, n: . 0 n  n<||l||  l[n] A |
|
lt_int | Def i< j == if i<j true ; false fi |
|
| Thm* i,j: . (i< j)  |
|
sum | Def sum(f(x) | x < k) == primrec(k;0; x,n. n+f(x)) |
|
| Thm* n: , f:( n  ). sum(f(x) | x < n)  |