Definitions mb list 2 Sections MarkB generic Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
rel_expDef R^n == if n=0 x,yx = y  T else x,yz:T. (x R z) & (z R^n-1 y) fi
Def (recursive)
Thm* n:T:Type, R:(TTProp). R^n  TTProp
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
int_segDef {i..j} == {k:i  k < j }
Thm* m,n:. {m..n Type
lastDef last(L) == L[(||L||-1)]
Thm* T:Type, L:T List. null(L last(L T
lengthDef ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive)
Thm* A:Type, l:A List. ||l||  
Thm* ||nil||  
natDef  == {i:| 0i }
Thm*   Type
selectDef l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n  n<||l||  l[n A

About:
listnillist_indboolbfalse
btrueifthenelseassertintnatural_numberaddsubtractint_eq
less_thansetlambdafunctionrecursive_def_noticeuniverse
equalmemberpropimpliesandallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb list 2 Sections MarkB generic Doc