| Some definitions of interest. |
|
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
| | Thm* T:Type, as,bs:T List. (as @ bs) T List |
|
firstn | Def firstn(n;as)
Def == Case of as
Def == Canil nil
Def == Caa.as' if 0< n [a / firstn(n-1;as')] else nil fi
Def (recursive) |
| | Thm* A:Type, as:A List, n: . firstn(n;as) A List |
|
int_iseg | Def {i...j} == {k: | i k & k j } |
| | Thm* i,j: . {i...j} Type |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
last | Def last(L) == L[(||L||-1)] |
| | Thm* T:Type, L:T List. null(L)  last(L) T |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n  n<||l||  l[n] A |
|
nth_tl | Def nth_tl(n;as) == if n 0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| | Thm* A:Type, as:A List, i: . nth_tl(i;as) A List |
|
rel_exp | Def R^n == if n= 0 x,y. x = y T else x,y. z:T. (x R z) & (z R^n-1 y) fi
Def (recursive) |
| | Thm* n: , T:Type, R:(T T Prop). R^n T T Prop |