| Some definitions of interest. |
|
swap_adjacent | Def swap adjacent[P(x;y)](L1,L2)
Def == i: (||L1||-1). P(L1[i];L1[(i+1)]) & L2 = swap(L1;i;i+1) A List |
| | Thm* A:Type, P:(A A Prop). swap adjacent[P(x,y)] (A List) (A List) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
swap | Def swap(L;i;j) == (L o (i, j)) |
| | Thm* T:Type, L:T List, i,j: ||L||. swap(L;i;j) T List |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
map | Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')]
Def (recursive) |
| | Thm* A,B:Type, f:(A B), l:A List. map(f;l) B List |
| | Thm* A,B:Type, f:(A B), l:A List . map(f;l) B List |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n  n<||l||  l[n] A |