lang_rel |
Def L-induced Equiv(x,y) == ![]() ![]() ![]() Thm* |
append |
Def as @ bs == Case of as; nil ![]() ![]()
Thm* |
assert |
Def ![]() ![]() Thm* |
decidable |
Def Dec(P) == P ![]() ![]() Thm* |
equiv_rel |
Def EquivRel x,y:T. E(x;y)
== Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)
Thm* |
finite |
Def Fin(s) == ![]() ![]() ![]() ![]() ![]() ![]() Thm* |
iff |
Def P ![]() ![]() ![]() ![]() ![]() ![]() Thm* |
int_seg |
Def {i..j![]() ![]() ![]() Thm* |
int_upper |
Def {i...} == {j:![]() ![]() Thm* |
languages |
Def LangOver(Alph) == Alph*![]() ![]()
Thm* |
nat |
Def ![]() ![]() ![]() Thm* |
one_one_corr |
Def A ~ B == ![]() ![]() ![]() ![]() ![]() Thm* |
lelt |
Def i ![]() ![]() |
le |
Def A![]() ![]() Thm* |
not |
Def ![]() ![]() ![]() Thm* |
trans |
Def Trans x,y:T. E(x;y) == ![]() ![]() ![]() ![]() ![]() Thm* |
sym |
Def Sym x,y:T. E(x;y) == ![]() ![]() ![]() Thm* |
refl |
Def Refl(T;x,y.E(x;y)) == ![]() Thm* |
biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* |
rev_implies |
Def P ![]() ![]() ![]() ![]() Thm* |
inv_funs |
Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id
Thm* |
surject |
Def Surj(A; B; f) == ![]() ![]() Thm* |
inject |
Def Inj(A; B; f) == ![]() ![]() ![]() ![]() Thm* |
tidentity |
Def Id == Id
Thm* |
compose |
Def (f o g)(x) == f(g(x))
Thm* |
identity |
Def Id(x) == x
Thm* |
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |