| lang_rel |
Def L-induced Equiv(x,y) == Thm* |
| append |
Def as @ bs == Case of as; nil
Thm* |
| assert |
Def Thm* |
| decidable |
Def Dec(P) == P Thm* |
| equiv_rel |
Def EquivRel x,y:T. E(x;y)
== Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)
Thm* |
| finite |
Def Fin(s) == Thm* |
| iff |
Def P Thm* |
| int_seg |
Def {i..j Thm* |
| int_upper |
Def {i...} == {j: Thm* |
| languages |
Def LangOver(Alph) == Alph*
Thm* |
| nat |
Def Thm* |
| one_one_corr |
Def A ~ B == Thm* |
| lelt |
Def i |
| le |
Def A Thm* |
| not |
Def Thm* |
| trans |
Def Trans x,y:T. E(x;y) == Thm* |
| sym |
Def Sym x,y:T. E(x;y) == Thm* |
| refl |
Def Refl(T;x,y.E(x;y)) == Thm* |
| biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* |
| rev_implies |
Def P Thm* |
| inv_funs |
Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id
Thm* |
| surject |
Def Surj(A; B; f) == Thm* |
| inject |
Def Inj(A; B; f) == Thm* |
| tidentity |
Def Id == Id
Thm* |
| compose |
Def (f o g)(x) == f(g(x))
Thm* |
| identity |
Def Id(x) == x
Thm* |
About: