finite |
Def Fin(s) == n: , f:( n s). Bij( n; s; f)
Thm* T:Type. Fin(T) Prop
|
mem_f |
Def mem_f(T;a;bs) == Case of bs; nil False ; b.bs' b = a T mem_f(T;a;bs')
(recursive)
Thm* T:Type, a:T, bs:T*. mem_f(T;a;bs) Prop
|
int_seg |
Def {i..j } == {k: | i k < j }
Thm* m,n: . {m..n } Type
|
biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* A,B:Type, f:(A B). Bij(A; B; f) Prop
|
nat |
Def == {i: | 0 i }
Thm* Type
|
lelt |
Def i j < k == i j & j < k
|
surject |
Def Surj(A; B; f) == b:B. a:A. f(a) = b
Thm* A,B:Type, f:(A B). Surj(A; B; f) Prop
|
inject |
Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B  a1 = a2
Thm* A,B:Type, f:(A B). Inj(A; B; f) Prop
|
le |
Def A B == B < A
Thm* i,j: . i j Prop
|
not |
Def A == A  False
Thm* A:Prop. ( A) Prop
|