Thms myhill nerode Sections AutomataTheory Doc

action_set Def ActionSet(T) == car:TypeTcarcar

Thm* T:Type{i}. ActionSet(T) Type{i'}

aset_act Def a.act == 2of(a)

Thm* T:Type, a:ActionSet(T). a.act Ta.cara.car

aset_car Def a.car == 1of(a)

Thm* T:Type, a:ActionSet(T). a.car Type

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)

Thm* A:Type, l:A*. ||l||

Thm* ||nil||

listify Def listify(f; m; n) == if nm nil else f(m).listify(f; m+1; n) fi (recursive)

Thm* T:Type, m,n:, f:({m..n}T). listify(f; m; n) T*

mem_f Def mem_f(T;a;bs) == Case of bs; nil False ; b.bs' b = a T mem_f(T;a;bs') (recursive)

Thm* T:Type, a:T, bs:T*. mem_f(T;a;bs) Prop

nat Def == {i:| 0i }

Thm* Type

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

lelt Def i j < k == ij & j < k

le_int Def ij == j < i

Thm* i,j:. ij

le Def AB == B < A

Thm* i,j:. ij Prop

lt_int Def i < j == if i < j true ; false fi

Thm* i,j:. i < j

bnot Def b == if b false else true fi

Thm* b:. b

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberifthenelsebfalse
btrueboollessintless_thanandequalapply
universefunctionexistsspreadproductsetnatural_numberrecursive_def_notice
list_indorlistnilconsadd