Thms myhill nerode Sections AutomataTheory Doc

NOTE: This operator coercing a to a Prop is normally invisible since it is pretty obvious when it is needed.

assert Def b == if b True else False fi

Thm* b:. b Prop

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

iff Def P Q == (P Q) & (P Q)

Thm* A,B:Prop. (A B) Prop

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

nat Def == {i:| 0i }

Thm* Type

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

mem_f Def mem_f(T;a;bs) == Case of bs; nil False ; b.bs' b = a T mem_f(T;a;bs') (recursive)

Thm* T:Type, a:T, bs:T*. mem_f(T;a;bs) Prop

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberequalapply
universefunctionexistsrecursive_def_noticelist_indorlistless_than
intandsetnatural_numberifthenelsetrueboolassert