| action_set | Def ActionSet(T) == car:Type  T   car   car Thm*  | 
| lquo_rel | Def Rg(x,y) ==  z:A*.  (g(z@  x))     (g(z@  y)) Thm*  | 
| mn_quo_append | Def z@  x == z @ x 
 Thm*  | 
| append | Def as @ bs == Case of as; nil  bs ; a.as'  a.(as' @ bs)  (recursive) 
 Thm*  | 
| assert | Def  b == if b  True else False fi Thm*  | 
| beq | Def p =  q == if p  q else   q fi 
 Thm*  | 
| bnot | Def   b == if b  false  else true  fi Thm*  | 
| decidable | Def Dec(P) == P    P Thm*  | 
| equiv_rel | Def EquivRel x,y:T. E(x;y)
== Refl(T;x,y.E(x;y))  &  Sym x,y:T. E(x;y)  &  Trans x,y:T. E(x;y) Thm*  | 
| finite | Def Fin(s) ==  n:  , f:(  n   s). Bij(  n; s; f) Thm*  | 
| iff | Def P   Q == (P   Q)  &  (P   Q) Thm*  | 
| mem_f | Def mem_f(T;a;bs) == Case of bs; nil  False ; b.bs'  b = a  T  mem_f(T;a;bs')
 (recursive) 
 Thm*  | 
| int_seg | Def {i..j  } == {k:  | i  k  <  j } Thm*  | 
| nat | Def  == {i:  | 0  i } Thm*  | 
| lelt | Def i  j  <  k == i  j  &  j < k | 
| le | Def A  B ==  B < A Thm*  | 
| not | Def  A == A   False Thm*  | 
| trans | Def Trans x,y:T. E(x;y) ==  a,b,c:T. E(a;b)   E(b;c)   E(a;c) Thm*  | 
| sym | Def Sym x,y:T. E(x;y) ==  a,b:T. E(a;b)   E(b;a) Thm*  | 
| refl | Def Refl(T;x,y.E(x;y)) ==  a:T. E(a;a) Thm*  | 
| biject | Def Bij(A; B; f) == Inj(A; B; f)  &  Surj(A; B; f) Thm*  | 
| rev_implies | Def P   Q == Q   P Thm*  | 
| surject | Def Surj(A; B; f) ==  b:B.  a:A. f(a) = b Thm*  | 
| inject | Def Inj(A; B; f) ==  a1,a2:A. f(a1) = f(a2)  B   a1 = a2 Thm*  | 
About:
|  |  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  |  | 
|  |  |  |  |  |  |  |  | 
|  |  |  |  |  |