Thm*
n:{1...}, A:Type, L:LangOver(A), R:(A*![]()
A*![]()
Prop).
Fin(A) ![]()
(EquivRel x,y:A*. x R y) ![]()
(
n ~ (x,y:A*//(x R y))) ![]()
(
x,y,z:A*. (x R y) ![]()
((z @ x) R (z @ y))) ![]()
(
g:((x,y:A*//(x R y))![]()
![]()
).
l:A*. L(l) ![]()
g(l)) ![]()
(
m:
.
m ~ (x,y:A*//(x L-induced Equiv y))) & (
l:A*. Dec(L(l)))
mn_23
Thm*
P:(![]()
![]()
Prop), n:
.
(
k:{n...}. P(k) ![]()
(
i:
k. P(i))) & (
m:
. P(m)) ![]()
(
m:
n. P(m))
mn_23_lem_0
In prior sections: int 1 bool 1 int 2 list 1 finite sets list 3 autom exponent relation autom det automata