PrintForm Definitions myhill nerode Sections AutomataTheory Doc

At: back listify 1 2 1 1 1

1. Alph: Type
2. S: ActionSet(Alph)
3. s: S.car
4. n:
5. f: nAlph
6. Bij(n; Alph; f)
7. n1:
8. f1: n1S.car
9. Bij(n1; S.car; f1)
10. BL: S.car*
11. t:S.car. mem_f(S.car;t;BL) (i:||(x. < f1(x),(y.S.act(f(y),f1(x)))[n] > )[n1]||. f1(i) = t & mem_f(S.car;s;(y.S.act(f(y),f1(i)))[n]))

BL:S.car*. t:S.car. mem_f(S.car;t;BL) (a:Alph. S.act(a,t) = s)

By:
InstConcl [BL]
THEN
InstHyp [t] 11
THEN
Thin 11


Generated subgoals:

111. t: S.car
12. mem_f(S.car;t;BL)
13. mem_f(S.car;t;BL) (i:||(x. < f1(x),(y.S.act(f(y),f1(x)))[n] > )[n1]||. f1(i) = t & mem_f(S.car;s;(y.S.act(f(y),f1(i)))[n]))
14. mem_f(S.car;t;BL) (i:||(x. < f1(x),(y.S.act(f(y),f1(x)))[n] > )[n1]||. f1(i) = t & mem_f(S.car;s;(y.S.act(f(y),f1(i)))[n]))
a:Alph. S.act(a,t) = s
211. t: S.car
12. a:Alph. S.act(a,t) = s
13. mem_f(S.car;t;BL) (i:||(x. < f1(x),(y.S.act(f(y),f1(x)))[n] > )[n1]||. f1(i) = t & mem_f(S.car;s;(y.S.act(f(y),f1(i)))[n]))
14. mem_f(S.car;t;BL) (i:||(x. < f1(x),(y.S.act(f(y),f1(x)))[n] > )[n1]||. f1(i) = t & mem_f(S.car;s;(y.S.act(f(y),f1(i)))[n]))
mem_f(S.car;t;BL)


About:
existslistallequalapplyuniverse
functionnatural_numberlambdapairand