PrintForm Definitions myhill nerode Sections AutomataTheory Doc

At: back listify 1 2 1 1

1. Alph: Type
2. S: ActionSet(Alph)
3. s: S.car
4. n:
5. f: nAlph
6. Bij(n; Alph; f)
7. n1:
8. f1: n1S.car
9. Bij(n1; S.car; f1)
10. BL:S.car*. t:S.car. mem_f(S.car;t;BL) (i:||(x. < f1(x),(y.S.act(f(y),f1(x)))[n] > )[n1]||. 1of(((x. < f1(x),(y.S.act(f(y),f1(x)))[n] > )[n1])[i]) = t & mem_f(S.car;s;2of(((x. < f1(x),(y.S.act(f(y),f1(x)))[n] > )[n1])[i])))

BL:S.car*. t:S.car. mem_f(S.car;t;BL) (a:Alph. S.act(a,t) = s)

By:
RWH (LemmaC Thm* n:, f:(nT), i:n. ((f)[n])[i] = f(i)) -1
THEN
Reduce -1
THEN
Analyze -1


Generated subgoal:

110. BL: S.car*
11. t:S.car. mem_f(S.car;t;BL) (i:||(x. < f1(x),(y.S.act(f(y),f1(x)))[n] > )[n1]||. f1(i) = t & mem_f(S.car;s;(y.S.act(f(y),f1(i)))[n]))
BL:S.car*. t:S.car. mem_f(S.car;t;BL) (a:Alph. S.act(a,t) = s)


About:
existslistallequalapplyuniverse
functionnatural_numberlambdapairand