PrintForm
Definitions
myhill
nerode
Sections
AutomataTheory
Doc
At:
mn
12
1
1.
Alph:
Type
2.
L:
LangOver(Alph)
3.
Fin(Alph)
4.
St:
Type
5.
Auto:
Automata(Alph;St)
6.
Fin(St)
7.
L = LangOf(Auto)
R:(Alph*
Alph*
Prop). (EquivRel x,y:Alph*. x R y) c
(
g:((x,y:Alph*//R(x,y))
). Fin(x,y:Alph*//R(x,y)) & (
l:Alph*. L(l)
g(l)) & (
x,y,z:Alph*. R(x,y)
R((z @ x),z @ y)))
By:
Assert (EquivRel x,y:Alph*. (Result(Auto)x) = (Result(Auto)y))
Generated subgoals:
1
EquivRel x,y:Alph*. (Result(Auto)x) = (Result(Auto)y)
2
8.
EquivRel x,y:Alph*. (Result(Auto)x) = (Result(Auto)y)
R:(Alph*
Alph*
Prop). (EquivRel x,y:Alph*. x R y) c
(
g:((x,y:Alph*//R(x,y))
). Fin(x,y:Alph*//R(x,y)) & (
l:Alph*. L(l)
g(l)) & (
x,y,z:Alph*. R(x,y)
R((z @ x),z @ y)))
About: