PrintForm Definitions myhill nerode Sections AutomataTheory Doc

At: mn 12 1

1. Alph: Type
2. L: LangOver(Alph)
3. Fin(Alph)
4. St: Type
5. Auto: Automata(Alph;St)
6. Fin(St)
7. L = LangOf(Auto)

R:(Alph*Alph*Prop). (EquivRel x,y:Alph*. x R y) c (g:((x,y:Alph*//R(x,y))). Fin(x,y:Alph*//R(x,y)) & (l:Alph*. L(l) g(l)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)))

By: Assert (EquivRel x,y:Alph*. (Result(Auto)x) = (Result(Auto)y))

Generated subgoals:

1 EquivRel x,y:Alph*. (Result(Auto)x) = (Result(Auto)y)
28. EquivRel x,y:Alph*. (Result(Auto)x) = (Result(Auto)y)
R:(Alph*Alph*Prop). (EquivRel x,y:Alph*. x R y) c (g:((x,y:Alph*//R(x,y))). Fin(x,y:Alph*//R(x,y)) & (l:Alph*. L(l) g(l)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)))


About:
existsfunctionlistpropquotientapplybool
andallassertimpliesequaluniverse