PrintForm Definitions myhill nerode Sections AutomataTheory Doc

At: total back listify 1 1 2 2 1 2

1. Alph: Type
2. S: ActionSet(Alph)
3. sL: S.car*
4. Fin(Alph)
5. Fin(S.car)
6. n:
7. 0 < n
8. TBL: S.car*
9. ||TBL|| = n-1
10. i:||TBL||, j:i. TBL[i] = TBL[j]
11. s:S.car. mem_f(S.car;s;TBL) (w:Alph*. mem_f(S.car;(S:ws);sL))
12. AL: S.car*
13. s:S.car. False (w:Alph*. mem_f(S.car;(S:ws);sL))
14. s:S.car. mem_f(S.car;s;sL) mem_f(S.car;s;TBL) False
15. s:S.car, a:Alph. mem_f(S.car;S.act(a,s);TBL) mem_f(S.car;s;TBL) False
16. s: S.car
17. w:Alph*. mem_f(S.car;(S:ws);sL)

mem_f(S.car;s;TBL)

By:
Analyze -1
THEN
Assert (i:. i||w|| mem_f(S.car;(S:nth_tl(i;w)s);TBL))


Generated subgoals:

117. w: Alph*
18. mem_f(S.car;(S:ws);sL)
i:. i||w|| mem_f(S.car;(S:nth_tl(i;w)s);TBL)
217. w: Alph*
18. mem_f(S.car;(S:ws);sL)
19. i:. i||w|| mem_f(S.car;(S:nth_tl(i;w)s);TBL)
mem_f(S.car;s;TBL)


About:
allimpliesuniverselistintless_thannatural_number
equalsubtractexistsfalseorapply