PrintForm Definitions myhill nerode Sections AutomataTheory Doc

At: total back listify 1 1 2 2 1

1. Alph: Type
2. S: ActionSet(Alph)
3. sL: S.car*
4. Fin(Alph)
5. Fin(S.car)
6. n:
7. 0 < n
8. TBL: S.car*
9. ||TBL|| = n-1
10. i:||TBL||, j:i. TBL[i] = TBL[j]
11. s:S.car. mem_f(S.car;s;TBL) (w:Alph*. mem_f(S.car;(S:ws);sL))
12. AL: S.car*
13. s:S.car. False (w:Alph*. mem_f(S.car;(S:ws);sL))
14. s:S.car. mem_f(S.car;s;sL) mem_f(S.car;s;TBL) False
15. s:S.car, a:Alph. mem_f(S.car;S.act(a,s);TBL) mem_f(S.car;s;TBL) False

TBL:S.car*. (s:S.car. mem_f(S.car;s;TBL) (w:Alph*. mem_f(S.car;(S:ws);sL))) ||TBL|| = n & (i:||TBL||, j:i. TBL[i] = TBL[j]) & (s:S.car. mem_f(S.car;s;TBL) (w:Alph*. mem_f(S.car;(S:ws);sL))) & (AL:S.car*. (s:S.car. mem_f(S.car;s;AL) (w:Alph*. mem_f(S.car;(S:ws);sL))) & (s:S.car. mem_f(S.car;s;sL) mem_f(S.car;s;TBL) mem_f(S.car;s;AL)) & (s:S.car, a:Alph. mem_f(S.car;S.act(a,s);TBL) mem_f(S.car;s;TBL) mem_f(S.car;s;AL)))

By:
InstConcl [TBL]
THEN
Sel 1 (Analyze 0)


Generated subgoals:

116. s: S.car
17. mem_f(S.car;s;TBL)
w:Alph*. mem_f(S.car;(S:ws);sL)
216. s: S.car
17. w:Alph*. mem_f(S.car;(S:ws);sL)
mem_f(S.car;s;TBL)


About:
existslistorallandequalnatural_number
impliesapplyuniverseintless_thansubtractfalse