Thms nfa 1 Sections AutomataTheory Doc

nd_automata Def NDA(Alph;States) == (StatesAlphStatesProp)States(States)

Thm* Alph,States:Type{i}. nd_automata{i}(Alph;States) Type{i'}

nd_compute_list Def NDA(l)q == if null(l) q = I(NDA) St else t:St. NDA(tl(l))t & NDA(t,hd(l),q) fi (recursive)

Thm* Alph,St:Type, NDA:NDA(Alph;St), l:Alph*, q:St. NDA(l)q Prop

hd Def hd(l) == Case of l; nil "?" ; h.t h

Thm* A:Type, l:A*. ||l||1 hd(l) A

NDA_act Def n == 1of(n)

Thm* Alph,States:Type, n:NDA(Alph;States). n StatesAlphStatesProp

tl Def tl(l) == Case of l; nil nil ; h.t t

Thm* A:Type, l:A*. tl(l) A*

NDA_init Def I(n) == 1of(2of(n))

Thm* Alph,States:Type, n:NDA(Alph;States). I(n) States

null Def null(as) == Case of as; nil true ; a.as' false

Thm* T:Type, as:T*. null(as)

Thm* null(nil)

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

About:
!abstractionspreadalluniversefunctionproductmemberlist_ind
btruebfalselistboolnilproptokenimplies
natural_numberrecursive_def_noticeifthenelseequalexistsandapply