Thms nfa 1 Sections AutomataTheory Doc

NDA_init Def I(n) == 1of(2of(n))

Thm* Alph,States:Type, n:NDA(Alph;States). I(n) States

hd Def hd(l) == Case of l; nil "?" ; h.t h

Thm* A:Type, l:A*. ||l||1 hd(l) A

nd_automata Def NDA(Alph;States) == (StatesAlphStatesProp)States(States)

Thm* Alph,States:Type{i}. nd_automata{i}(Alph;States) Type{i'}

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

reverse Def rev(as) == Case of as; nil nil ; a.as' rev(as') @ [a] (recursive)

Thm* T:Type, as:T*. rev(as) T*

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

append Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)

Thm* T:Type, as,bs:T*. (as @ bs) T*

About:
recursive_def_notice!abstractionlist_indconsalluniverse
listmemberspreadfunctionproductnil
propbooltokenimpliesnatural_number