nfa 1 Sections AutomataTheory Doc

Def NComp(Alph;St) == {C:(StAlph* List)| i:(||C||-1). ||2of(C[i])|| > 0 }

Thm* NDA:NDA(Alph;St), C:NComp(Alph;St), q:St, a:Alph, p:St. NDA(C) q NDA(q,a,p) NDA(C+[a;p]) p nd_ext_valcom

Thm* Alph,St:Type, NDA:NDA(Alph;St), C:NComp(Alph;St), q:St. NDA(C) q Prop nd_valcom_wf

Thm* Alph,St:Type, C:NComp(Alph;St), a:Alph, q:St. C+[a;q] NComp(Alph;St) nd_comp_extend_wf

Thm* Alph,St:Type, q:St. [ < q,[] > ] NComp(Alph;St) nd_comp_init_wf

Thm* Alph,St:Type, C:NComp(Alph;St). ||C|| nd_comp_length_wf

Thm* Alph,St:Type, C:NComp(Alph;St). |C| Alph* nd_comp_car_wf