PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd comp extend wf


Alph,St:Type, C:NComp(Alph;St), a:Alph, q:St. C+[a;q] NComp(Alph;St)

By:
Unfold `nd_computation` 0
THEN
Unfold `nd_comp_extend` 0
THEN
Unfold `list_p` 0


Generated subgoal:

11. Alph: Type
2. St: Type
3. C: {C:{l:((StAlph*)*)| ||l|| > 0 }| i:(||C||-1). ||2of(C[i])|| > 0 }
4. a: Alph
5. q: St
(map(c. < 1of(c),a.2of(c) > ;C) @ [ < q,nil > ]) {C:{l:((StAlph*)*)| ||l|| > 0 }| i:(||C||-1). ||2of(C[i])|| > 0 }


About:
alluniversemembersetlistproduct
natural_numbersubtractlambdapairconsnil