PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd comp extend wf 1

1. Alph: Type
2. St: Type
3. C: {C:{l:((StAlph*)*)| ||l|| > 0 }| i:(||C||-1). ||2of(C[i])|| > 0 }
4. a: Alph
5. q: St

(map(c. < 1of(c),a.2of(c) > ;C) @ [ < q,nil > ]) {C:{l:((StAlph*)*)| ||l|| > 0 }| i:(||C||-1). ||2of(C[i])|| > 0 }

By: Analyze

Generated subgoals:

1 (map(c. < 1of(c),a.2of(c) > ;C) @ [ < q,nil > ]) {l:((StAlph*)*)| ||l|| > 0 }
26. i: (||map(c. < 1of(c),a.2of(c) > ;C) @ [ < q,nil > ]||-1)
||2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < q,nil > ])[i])|| > 0


About:
membersetlistproductnatural_numberall
subtractlambdapairconsniluniverse